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BACKGROUND: Chronic obstructive pulmonary disease (COPD) is a heterogeneous pulmonary disease affecting 16 million Americans. Individuals
with COPD are susceptible to environmental disturbances including heat and cold waves that can exacerbate disease symptoms.

OBJECTIVE: Our objective was to estimate heat and cold wave–associated mortality risks within a population diagnosed with a chronic respiratory
disease.
METHODS: We collected individual level data with geocoded residential addresses from the Veterans Health Administration on 377,545 deceased
patients with COPD (2016 to 2021). A time stratified case-crossover study was designed to estimate the incidence rate ratios (IRR) of heat and cold
wave mortality risks using conditional logistic regression models examining lagged effects up to 7 d. Attributable risks (AR) were calculated for the
lag day with the strongest association for heat and cold waves, respectively. Effect modification by age, gender, race, and ethnicity was also explored.
RESULTS: Heat waves had the strongest effect on all-cause mortality at lag day 0 [IRR: 1.04; 95% confidence interval (CI): 1.02, 1.06] with attenuated
effects by lag day 1. The AR at lag day 0 was 651 (95% CI: 326, 975) per 100,000 veterans. The effect of cold waves steadily increased from lag day
2 and plateaued at lag day 4 (IRR: 1.04; 95% CI: 1.02, 1.07) with declining but still elevated effects over the remaining 7-d lag period. The AR at lag
day 4 was 687 (95% CI: 344, 1,200) per 100,000 veterans. Differences in risk were also detected upon stratification by gender and race.
DISCUSSION: Our study demonstrated harmful associations between heat and cold waves among a high-risk population of veterans with COPD using
individual level health data. Future research should emphasize using individual level data to better estimate the associations between extreme weather
events and health outcomes for high-risk populations with chronic medical conditions. https://doi.org/10.1289/EHP13176

Introduction
Anthropogenic climate change is causing harmful planetary effects
with increased frequency, intensity, duration, and geographic
extent of extreme weather events, including heat waves, droughts,
wildfires, and floods.1,2 Furthermore, climate change dispropor-
tionately affects children, the elderly, racial minorities, impover-
ished communities, and those living with underlying comorbidities
such as chronic obstructive pulmonary disease (COPD).1,3

COPD is a heterogeneous, degenerative pulmonary disease
characterized by airflow obstruction.4 In the United States, <6:2%
of adults had a diagnosis of COPD in 2017.5 While the overall age
adjusted mortality rates of COPD in the United States decreased in
recent decades, improvements in COPD mortality were not
equally distributed among the population. Age-adjusted mortality
rates in males have decreased over time, but age-adjusted mortal-
ity rates in females remained relatively unchanged.6,7 African
American women were the only race-sex combination that had
an increase in age-adjusted mortality rates from 2004 to 2018.6
Individuals with COPD are often more susceptible to environmental
perturbations due to compromised respiratory health and high rates of
comorbidities, which lead to further debilitation and poorer health.8,9

While extremes in ambient temperature (heat and cold) are
known to increase the risk of general mortality,10–12 there is a

dearth of evidence on heat and cold wave impacts at the individ-
ual level for populations with underlying chronic disease. Many
studies evaluate the health risks from heat and cold waves using
ecological time series analyses; however, these studies are lim-
ited in the ability to make inferences at the individual level, typi-
cally relying on aggregated counts of morbidity or mortality
using hospital discharge or nonspecific government data. This
complicates the development of public health interventions and
impedes understanding of disease etiology by failing to assess
individual level characteristics that may cause an individual to be
more or less susceptible to extreme heat and cold. In addition,
research findings based on the general population may not accu-
rately represent the health risks experienced by those living with
underlying chronic diseases who may be more susceptible to
climate-related hazards.

To facilitate the development of improved public health inter-
ventions and climate change adaptation plans, we designed a time-
stratified13 case-crossover study14 to examine the associations
between heat and cold waves with all-cause mortality among a
population of individuals diagnosed with COPD using data from
the Veterans Health Administration (VHA) in the United States
(2016 to 2021). We evaluated health disparities in heat and cold
wave mortality risk for several effect modifiers: age, gender, race,
and ethnicity.

Methods

Study Population
We extracted electronic health record data from the VHACorporate
Data Warehouse (CDW). The study population was derived from a
source cohort of veterans15 who had a diagnosis of COPD
between 2016 to 2019 from the VHA (N =1,124,705). We identi-
fied patients with COPD using at least two clinical encounters
with an International Classification of Diseases Ninth Revision
or Tenth Revision codes (ICD-9: 490, 491.XX, 492.XX, 496; or
ICD-10: J40, J41.X, J42, J43.X, J44.X) for COPD (Table S1).16

This included both veterans who were newly diagnosed or who
had prevalent COPD between 2016 to 2019.We included patients
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>35 years of age and <100 years of age at the initial date of
COPD diagnosis.

Our study included exposure information for only those veter-
ans diagnosed with COPD who were deceased. Mortality data
is updated quarterly by the VHA using data from the Social
Security Master Death File, the Medicare Vital Status File, and
the Veterans Benefits Administration’s Beneficiary Identification
and Records Locator System. Mortality events are only recog-
nized if death certificates were made at a VHA facility or under
their auspices or presented to the VHA by the National Cemetery
Administration. This is done to protect veterans who are alive
from being misclassified as deceased.17

Veterans living outside of the contiguous United States or
who lived outside of the range of our weather data raster surface
were excluded. Our outcome of interest was the association
between heat and cold waves with all-cause mortality among this
targeted veterans population with COPD. We obtained the fol-
lowing information from the VHA Patient Enrollee files in the
CDW17: patients’ age at death, self-reported gender (cisgender
man, cisgender woman, transgender), self-reported race [American
Indian/Alaska Native (AIAN), Asian American/Pacific Islander
(AAPI), black, and white], self-reported ethnicity (Hispanic and
non-Hispanic), and a geocoded residential address accurate up to
3 months prior to death. Race is a social construct to consider when
evaluating the impacts systemic discrimination may have on expo-
sure to climate-related hazards and subsequent health outcomes.

Environmental Data
Weassigned dailymeteorologic conditions (mean ambient temper-
ature, total precipitation, mean specific humidity, and mean wind
speed) to the residential addresses of the study cohort using data
from GridMet.18 GridMet is a blended dataset of Parameter eleva-
tion Regressions on Independent Slopes (PRISM) and the North
American Land Data Assimilation System (NLDAS-2), obtained
at a spatiotemporal resolution of daily 4- × 4-km grid cells.18

A 30-year distribution of weather data (1992 to 2021) was
used to calculate percentile thresholds to determine heat and cold
wave status. Using 30 years of meteorological data ensured we
captured heat and cold waves that were anomalous for each veter-
ans’ geocoded residence in comparison to an historical record of
usual weather conditions at their home location. We defined heat
waves as two or more consecutive days whose mean ambient
daily temperature was above the 90th percentile of warm season
(April to September) mean ambient daily temperature values
from 1992 to 2021 and cold waves as two or more consecutive
days whose mean ambient daily temperature was below the 10th
percentile of cold season (October to March) mean ambient daily
temperature values from 1992 to 2021. The use of less extreme
percentiles to define heat and cold waves is a newer concept in
climate and health literature19–23 but is important for a COPD
study population that may be more susceptible to climate change
and have a lower tolerance than the general population.

For the subset of veterans who lived near air monitors with
valid data, daily mean fine particulate matter with aerodynamic
diameter ≤2:5 lm (PM2:5) concentrations were obtained from
the United States Environmental Protection Agency (EPA)24 air
monitor networks from 1 December 2015 to the most recent
available data at the time of our analysis, 11 November 2021. Air
pollution is an important time-varying confounder of mortality
that we could only assess in this subset population due to spa-
tially incomplete monitor coverage. We removed outlying days
exceeding the 99.5th and 0.5th PM2:5 percentiles, as these may
have been anomalies in the data recording process, and set any
days with negative values for PM2:5 to 0. Daily concentrations
were assigned to the geocoded address of this subset population

of veterans living within 10 km of an active PM2:5 monitor by
averaging all active PM2:5 monitor values on a given day.

Study Design
We examined the associations between heat and cold waves with
all-cause mortality using a time-stratified13 case-crossover14 study
design. Each veteran’s date of death was matched with referent
days in the same year, month, and day of week as the date of mor-
tality (event day), adjusting for confounding by season and day of
week.25 Under this matching strategy, each veteranwas guaranteed
at least 3 referent days. Since the case-crossover study design is a
self-matched study, both observed and unobserved time-invariant
confounding are controlled for by design, including unmeasured
risk factors such as comorbidities, smoking history, genetics, or
lifestyle.26 We adjusted for daily time varying weather confound-
ers, including precipitation, specific humidity, and wind speed.
Specific humidity is a mass-based measurement of atmospheric
moisture and is a better representation of suspended water vapor
than relative humidity.27 We also adjusted for holiday status,
which included all federally recognized United States’ holidays28
and several other major holidays including Christmas Eve, New
Year’s Eve, Easter, and Halloween, as patients have different
health seeking behaviors during holidays.

Statistical Analyses
Conditional logistic regression models were used to estimate inci-
dence rate ratios (IRR)26,29 describing associations between heat
and cold wave exposure with all-cause mortality. Heat and cold
wave assessments were restricted to warm (April to September)
and cold (October to March) seasons, respectively. We examined
delayed effects from lag day 0 to 7 (i.e., day of death to 7 d prior)
where each lag was evaluated in a separate model.

Our statistical models assumed the following form:

logitðpikÞ=ai + b1xik1 +b2xik2 + b3xik3 + b4xik4 + b5xik5,

where b1 is an indicator variable to denote heat or cold wave status
for the ith person on the kth day of the matched set respectively, b2
and b3 are linear terms for precipitation and wind speed, b4 is a lin-
ear term for specific humidity in the cold seasonmodel but is a nat-
ural cubic spline with 5 degrees of freedom for the warm season
model, and b5 is an indicator variable to denote holiday status. An
assessment of nonlinearity among exposure variables identified
heat wave status and specific humidity to have a nonlinear relation-
ship. We used the Akaike information criterion (AIC) to deter-
mine an optimal parameterization to account for this nonlinear
relationship, and a natural cubic spline with 5 degrees of free-
dom was chosen as the best smoother for specific humidity. No
other nonlinear relationships were detected, and linear terms
were deemed appropriate.

To test for effect modification and ascertain potential health
disparities via societal discrimination and to measure biological
effects of age on extreme weather susceptibility, we used strati-
fied data subsets based on the effect modifiers of age at death,
gender, race, and ethnicity. For age at death, we created a binary
stratification for veterans <70 and ≥70 years of age. Models of
heat and cold waves estimated IRRs for each subgroup. To deter-
mine the presence of effect modification, we employed a Z-test30

to compare the IRRs of each strata at lag 0 to 7 d (Equation 1).

Z = ðb1–b2Þ=sqrt
�
ðSE1Þ2 + ðSE2Þ2

�
(1)

Equation 1 is a Z-test formula to determine statistical signifi-
cance of the difference between effect modifier estimates, where
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b1 and b2 are the unexponentiated coefficients from the condi-
tional logistic regression models for the two strata of effect modi-
fiers being compared and SE1 and SE2 are their standard errors.

Missing data, which constituted a small proportion of our
data, were treated as a separate stratum in our subgroup analyses
and assumed missing at random. Attributable risks (AR) for the
overall population were calculated for the strongest lag day
(Equation 2).

AR=
Ie

pe + 1
IRR−1

(2)

Equation 2 is the attributable risk formula, where Ie is the
season-specific mortality rate in the entire population of veterans
with COPD, pe is the proportion of control days that were
exposed to heat or cold waves, and IRR is the effect estimate of
heat and cold wave effects on mortality estimated via conditional
logistic regression models.

All statistical analyses and maps were completed in R statisti-
cal software (version 4.1; R Development Core Team) within the
secure Department of Veterans Affairs (VA) Informatics and
Computing Infrastructure environment.

Sensitivity Analyses
We completed sensitivity analyses to examine model robustness
against a) definitions of heat and cold waves (intensity, duration,
and reference distribution), b) potential confounding from ambi-
ent air pollution, and c) the COVID-19 pandemic.

Multiple heat and cold wave definitions were evaluated.
First, we reassigned heat and cold waves using alternative 95th,
97.5th, and 99th percentiles (heat waves) and 5th, 2.5th, and 1st
percentiles (cold waves) of the 30-year mean temperature refer-
ence distribution during the warm and cold seasons to test
model robustness to more severe heat and cold wave events.
Second, we applied a shorter reference distribution of 20 years
(2002 to 2021) to assess model sensitivity to recent patterns of
climate exposure. Third, we excluded veterans who were
exposed to heat or cold waves that lasted longer than 10 d and
compared model results against our primary analysis. This was
performed because under our primary definitions, some heat
and cold wave events were anomalously long in duration.
Fourth, we excluded veterans residing in areas with relatively
mild 30-year percentile thresholds for both heat waves (<25�C)
and cold waves (>5�C) and compared model results against our
primary analysis. The purpose of this evaluation was to test the
degree of influence veterans living in areas with mild climates

had on the overall associations between heat and cold waves
with all-cause mortality.

We assessed the potential role of air pollution, which could not
be considered in our main models due to spatially incomplete air
monitor data, in a subevaluation.We restricted our dataset to veter-
ans livingwithin a 10-km buffer of EPAPM2:5 air monitors and ran
separate models with and without adjustment for daily PM2:5 as a
confounder for both heat and cold wave events. Estimates for mod-
els with and without air pollution data were compared for the
amount of confounding bias that may be present. Finally, since
increased mortality likely occurred during the COVID-19 pan-
demic, we ran a stratified analysis comparing veterans who died pre
and post 31 January 2020, the day the United States Department of
Health and Human Services declared COVID-19 a public health
emergency.31 State level COVID-19 deaths at the weekly time
interval were acquired from the National Center for Health
Statistics32 to be included as a time varying confounder if strati-
fied analyses suggested differences in the heat and cold wave
effect estimates pre and post the COVID-19 public health emer-
gency declaration.

Ethics Statement
This study was approved by the institutional review boards at the
Minneapolis VA and the University of Minnesota.

Results

Descriptive Statistics
The source cohort of veterans with COPD included 1,124,705
individuals. For our case-crossover study, we identified 377,545
deceased veterans with COPD. These deceased veterans lived in
3,058 out of 3,109 counties in the United States (98.4%). All 48
states and the District of Columbia were represented in the study
sample (Figure 1). The study population was predominately male
and older with the largest racial/ethnic group being non-Hispanic
white (Table 1). All veterans identified died by December 2021.

Exposure to heat and cold waves in our study population
occurred with 28.4% and 24.7% of patients having either an event
or referent day exposed to heat waves and cold waves, respec-
tively (Table 2). A total of 183,725 patients died during the warm
season, resulting in a warm season mortality rate of 16,335 per
100,000 patients in this cohort of veterans with COPD. Of those
who died during the warm season, 17,621 patients died during a
heat wave event (9.6% of warm season mortality events). A total
of 193,820 patients died during the cold season, resulting in a
cold season mortality rate of 17,233 per 100,000 patients in the

Figure 1. County level totals of deceased veterans with COPD (2016 to 2021, n=377,545) in the VHA health care system based on county of residence at
time of death. The map was created using R statistical software. Note: COPD, chronic obstructive pulmonary disease; VHA, Veterans Health Administration.
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entire veteran population with COPD. Of those who died during
the cold season, 13,961 patients died during a cold wave event
(7.2% of cold season mortality events) (Table 2). The total num-
ber of study days (event and referent days) in the case crossover
study classified as heat and cold waves were 9.4% and 7.1% of
the total study period days within the warm and cold seasons,
respectively (Table 2).

Table 3 demonstrates higher mean ambient temperatures dur-
ing heat wave days on which patients died compared to non–heat
wave days and lower mean ambient temperature during cold wave
days on which patients died compared to non–cold wave days.
Non–heat wave/non–coldwave days tended to have greater precip-
itation compared to heat wave days and cold wave days. Heat wave
days tended to have greater atmospheric moisture than non–heat
wave days, and the reverse was seen for cold waves (Table 3). For
the subset of veterans livingwithin 10 km of a valid PM2:5 air mon-
itor site (n=20,735 warm season, n=21,535 cold season), heat
wave days had higher mean PM2:5 concentrations than non–heat
wave days (Table 3). Coldwave and non–cold wave days had simi-
lar PM2:5 concentrations (Table 3). Similar trends in meteorologi-
cal and air pollution levels were also observed for the referent days
in our case-crossover dataset (Table S2).

Overall Associations
Associations between heat waves and all-cause mortality showed
the strongest effect on lag day 0 with an IRR of 1.04 [95%

confidence interval (CI): 1.02, 1.06]. Effects lasted until lag day 1
(IRR: 1.02; 95% CI: 1.00, 1.04) after which heat wave effects
became attenuated (Figure 2). There was minimal effect of meas-
ured confounders (daily total precipitation, mean wind speed,
mean specific humidity, and holiday status) on the heat wave effect
estimate comparing crude and adjusted models (Table S3).
Among patients exposed to heat waves on lag day 0, 651 (95% CI:
326, 975) deaths per 100,000 were attributable to heat waves.
Cold waves increased the risk of all-cause mortality from lag days
2 to 7 with the strongest effect on lag day 4 with an IRR of 1.04
(95% CI: 1.02, 1.07). Effects of cold waves gradually increased
from lag day 2, plateaued at lag day 4, and decreased through lag
day 7 (Figure 2). A comparison of crude and adjusted cold wave
models indicated potential confounding by measured confounders
primarily on lag days 0 to 2, but minimal confounding of effect
estimates from lag days 3 to 7 (Table S3). Among patients
exposed to cold waves on lag day 4, 687 (95% CI: 344; 1,200) per
100,000 deaths were attributable to cold waves.

Stratified Analyses
We used stratified analyses to examine effect modification of heat
and cold wave associations with all-cause mortality with respect
to age, gender, race, and ethnicity.

Age. Heat waves increased the risk of all-cause mortality
within the younger (<70 years of age) group from lag days 0 to 2
with the strongest effect detected on lag day 0 (IRR: 1.05; 95%
CI: 1.01, 1.10) whereas in the older (70+ years of age) group,
heat wave effects were only seen on lag day 0 (IRR: 1.03; 95%
CI: 1.01, 1.06) (Figure 3). Cold wave–associated mortality risks
were observed in the younger age group from lag day 2 to 6 with
the highest risk at lag days 3 and 4 (IRR lag day 3: 1.05; 95% CI:
1.00, 1.09). In the older age group, cold wave–related effects per-
sisted from lag day 3 to 5 and lag day 7 with the highest risk at
lag day 4 (IRR: 1.04; 95% CI: 1.02, 1.07) (Figure 3). Age group
estimates for heat and cold waves were not statistically different
from each other (Table S4).

Gender. Cisgender men had heat wave–related mortality risk
at lag day 0 (IRR: 1.03; 95% CI: 1.01, 1.06), whereas cisgender
women had heat wave–associated mortality risk from lag days 0 to
2 with the greatest estimated risk on lag day 1 (IRR: 1.26; 95% CI:
1.10, 1.44), a 25% significant difference in risk compared to cisgen-
der men on that same day (Figure 4; Table S5). For cold waves, cis-
gender men had an elevated risk of mortality at all lag days 2 to 7
with the greatest risk seen on lag day 4 (IRR: 1.04; 95% CI: 1.02,
1.07). The point estimates for cold wave–related mortality among
cisgender womenwere similar to cisgendermen; however, the esti-
mates were less statistically precise (Figure 4). A small number of
individuals identified as transgender (n=6) andwere excluded.

Table 1. Baseline characteristics of deceased veterans with COPD (2016 to
2021, n=377,545) in the VHA health care system.

Characteristic n (%)

Age at death [n (%)]
<70 years 96,437 (25.6%)
70+ years 281,108 (74.4%)
Gender [n (%)]
Cisgender male 369,535 (97.9%)
Cisgender female 8,004 (2.1%)
Transgender 6 (<1%)
Race [n (%)]
White 298,978 (85.8%)
Black 42,754 (12.3%)
American Indian/Alaska Native 3,329 (<1%)
Asian American/Pacific Islander 3,600 (1%)
Missinga 28,884
Ethnicity [n (%)]
Non-Hispanic 353,983 (97.8%)
Hispanic 7,889 (2.2%)
Missing 15,673

Note: Characteristics other than age at death were self-reported. COPD, chronic obstruc-
tive pulmonary disease; VHA, Veterans Health Administration.
aMissing data were not used in the calculation of percentages.

Table 2. Frequencies of heat and cold wave exposure for deceased veterans with COPD (2016 to 2021, n=377,545) in the VHA health care system stratified
by mortality (event) and referent day status.

Category

Warm season Cold season

Heat wave Non–heat wave Total Cold wave Non–cold wave Total

Exposed veterans [n (%)]a 52,258 (28.4%) 131,467 (71.6%) 183,725 47,802 (24.7%) 146,018 (75.3%) 193,820
Exposure during event day [days (%)]b 17,621 (9.6%) 166,104 (90.4%) 183,725 13,961 (7.2%) 179,859 (92.8%) 193,820
Exposure during referent day [days (%)]c 58,246 (9.3%) 568,087 (90.7%) 626,333 46,355 (7.1%) 610,286 (92.9%) 656,641
Total study days (%)d 75,867 (9.4%) 734,191 (90.6%) 810,058 60,316 (7.1%) 790,145 (92.9%) 850,461

Note: Heat waves defined as 2+ consecutive days where the ambient mean daily temperature exceeded the 90th percentile of ambient mean temperature values for the warm season
(April to September) from 1992 to 2021. Cold waves defined as 2+ consecutive days where the ambient mean daily temperature was below the 10th percentile of ambient mean tem-
perature values for the cold season (October to March) from 1992 to 2021. COPD, chronic obstructive pulmonary disease; VHA, Veterans Health Administration.
aWhere veterans who were exposed on either an event or referent day were considered as exposed. This row represents counts of unique deceased veterans who died during the warm
or cold season.
bCounts only include exposure during the event day (lag day 0) for each deceased veteran.
cThe unit of measurement for this row is days as veterans have multiple matched referent days.
dWhere the total number of event and referent days used for the study were included in the totals for this row.
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Race. Black patients had the largest overall risk of heat
wave–associated mortality among all race groups with the great-
est risk on lag day 0 (IRR: 1.09; 95% CI: 1.02, 1.15). White
patients also showed heightened but smaller heat wave mortality
associations on lag day 0 (Figure 5) while all other race groups,
including patients with missing race data, showed no associations
with heat waves (Table S6). AIAN patients had relatively large
cold wave–related mortality risks on lag days 3 to 5 with the
greatest effect seen on lag day 4 (IRR: 1.32; 95% CI: 1.08, 1.62).
Among white patients, cold wave associations with mortality
were not detected until lag day 3 with gradually increasing risk
that plateaued at lag day 4 (IRR: 1.04; 95% CI: 1.02, 1.07) with
lower but heightened risks through lag day 6 (Figure 5). AAPI
and black patients’ point estimates for cold wave–related mortal-
ity risk followed a similar trend to white patients; however, the
estimates were less statistically precise driven in part by a smaller
sample size compared to white patients (Table S6). Patients with
missing race data had relatively large cold wave–associated mor-
tality risks throughout the entire 7-d lag period, which peaked at
lag day 7 (IRR: 1.09; 95% CI: 1.01, 1.17).

Ethnicity. Heat wave effects among non-Hispanic patients
lasted from lag days 0 to 1 with the strongest effect on lag day 0
(IRR: 1.04; 95% CI: 1.02, 1.06). Hispanic patients did not have
any associations with heat waves (Table S7). For cold waves,
non-Hispanic patients had associations from lag days 2 to 6 with

lag day 4 having the greatest risk of all-cause mortality (IRR:
1.04; 95% CI: 1.02, 1.07). Hispanic patients showed much larger
cold wave–associated risk from lag days 4 to 5 with the greatest
risk seen on lag day 4 (IRR: 1.15; 95% CI: 1.00, 1.32), but we
did not observe significant differences in heat and cold wave
effects by ethnicity (Table S7). Individuals with missing ethnicity
data comprised 4.1% of veterans and were not evaluated as a sep-
arate stratum.

Sensitivity Analyses
Our sensitivity analysis for more stringent percentile thresholds
of heat and cold waves illustrated a trend of robustness in our
interpretation, although higher percentiles of heat waves did elicit
an elevated risk of mortality on lag day 0 (Table S8). Cold wave
results were generally unchanged, except for the first percentile
of exposure, which showed an increased risk of mortality on lag
day 6 (Table S8). More stringent percentile thresholds for both
heat and cold waves resulted in a substantial decrease in exposed
mortality days, which limits our ability to evaluate broader trends
and distinctions within at-risk subpopulations.

Changing the reference period from a 30-year to a 20-year pe-
riod for heat and cold waves did not impact our results (Table S9).
Our model results were also robust to the exclusion of patients who
were exposed to long duration heat and cold wave events and to the

Table 3.Meteorological and air pollution data summaries on days of mortality for veterans with COPD (2016 to 2021) in the VHA health care system stratified
by heat and cold wave status.

Exposure (mean± SD) Heat wave Non–heat wave Cold wave Non–cold wave

Mean temperature (°C) 27:91± 3:07 20:49± 6:41 −4:55± 8:64 9:01± 8:18
Total precipitation (mm) 2:27± 6:90 3:66± 10:19 1:25± 4:45 2:86± 8:21
Mean specific humidity (g/kg) 14:1± 3:97 10:5± 4:41 2:27± 1:72 5:33± 3:24
Mean wind speed (m/s) 3:39± 1:34 3:75± 1:54 4:69± 2:09 4:27± 1:86
Mean PM2:5 (l=m3)a 9:75± 4:39 7:66± 3:62 8:55± 3:94 8:38± 4:14

Note: Heat waves defined as 2+ consecutive days where the ambient mean daily temperature exceeded the 90th percentile of ambient mean temperature values for the warm season
(April to September) from 1992 to 2021. Cold waves defined as 2+ consecutive days where the ambient mean daily temperature was below the 10th percentile of ambient mean tem-
perature values for the cold season (October to March) from 1992 to 2021. COPD, chronic obstructive pulmonary disease; SD, standard deviation; VHA, Veterans Health
Administration.
aPM2:5 data was assigned only to a subset population of veterans who lived within a 10-km buffer of a valid air monitor (n=20,735 warm season, n=21,535 cold season). An average
daily value of all PM2:5 monitors within a 10-km buffer for each of the geocoded home location of these Veterans was calculated.

Figure 2. The estimated incidence rate ratio (IRR) for heat and cold wave associations with all-cause mortality among veterans with COPD (2016 to 2021,
n=377,545) from lag day 0 to 7. Heat waves defined as 2+ consecutive days where the ambient mean daily temperature exceeded the 90th percentile of ambi-
ent mean temperature values for the warm season (April to September) from 1992 to 2021. Cold waves defined as 2+ consecutive days where the ambient
mean daily temperature was below the 10th percentile of ambient mean temperature values for the cold season (October to March) from 1992 to 2021.
Estimates (95% CIs) were generated via conditional logistic regression models adjusted for daily total precipitation, mean wind speed, mean specific humidity,
and holiday status. Points represent the estimated IRR and lines denote the 95% CI of the estimated IRR. Numeric data can be found in Table S3. Note: CI,
confidence interval; COPD, chronic obstructive pulmonary disease.
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exclusion of patients who resided in locales with mild 30-year per-
centile threshold values (Tables S10 to S11).

In our assessment evaluating confounding bias by air pollu-
tion (PM2:5), we found minimal changes to the effect estimate for
heat waves (Table S12). When adjusting for daily mean PM2:5
among patients who lived within 10 km of an EPA air monitor,
the IRR at lag day 0 was 1.12 (95% CI: 1.05, 1.18) compared to
1.11 (95% CI: 1.05, 1.18) in a model without daily mean PM2:5.
For cold waves, estimates were unchanged in models with and
without daily mean PM2:5 adjustment (Table S12).

In the sensitivity assessment evaluating potential COVID-19
pandemic influences, we identified significant differences in heat
and cold wave mortality associations for patients who died pre
vs. post the COVID-19 emergency declaration (Table S13). To
assess whether this difference was attributable to COVID-19 inci-
dence, we ran new models including state-level weekly COVID-
19 case rates per 100,000 as a fixed effect into statistical models.
No changes were observed in the heat and cold wave effect esti-
mates, suggesting that any lag-specific differences in heat and
cold wave associations were not attributable to underlying inci-
dence of COVID-19 cases (Table S14).

Discussion
Our findings demonstrate an increased risk of mortality associ-
ated with heat and cold waves among a population of veterans
diagnosed with COPD. Heat waves had an immediate impact on
all-cause mortality, showing the greatest mortality risk on lag
day 0 for all populations except cisgender women. The finding of
acute, intense heat wave effects is a common observation in other
studies.33,34 Conversely, cold wave effects demonstrated a delayed
response starting on lag day 2, with the greatest effect detected at lag
day 4 for most populations, although elevated risk persisted
throughout the remainder of the 7-d exposure period. Within spe-
cific subpopulations, the effect of heat waves was larger in women
than in men and in black veterans than in white veterans. Of note,
the effect of cold waves was greater in AIAN and Hispanic veterans
compared towhite and non-Hispanic veterans, respectively.

A potential explanation for the disparate responses in heat
and cold wave effects may be attributed to the underlying cause
of death. Heat waves are predominately associated with more
acute causes of death such as cardiovascular dysfunction or heat
stress.35,36 Cardiovascular-related mortality events are the pri-
mary cause of death attributable to extreme heat.37 As the body

Figure 3. The estimated incidence rate ratio (IRR) for heat and cold wave associations with all-cause mortality among veterans with COPD (2016 to 2021,
n=377,545) from lag day 0 to 7, stratified by age group. Heat waves defined as 2+ consecutive days where the ambient mean daily temperature exceeded the
90th percentile of ambient mean temperature values for the warm season (April to September) from 1992 to 2021. Cold waves defined as 2+ consecutive days
where the ambient mean daily temperature was below the 10th percentile of ambient mean temperature values for the cold season (October to March) from
1992 to 2021. Estimates (95% CIs) were generated via conditional logistic regression models adjusted for daily total precipitation, mean wind speed, mean spe-
cific humidity, and holiday status. Points represent the estimated IRR and lines denote the 95% CI of the estimated IRR. Numeric data can be found in Table
S4. Note: CI, confidence interval; COPD, chronic obstructive pulmonary disease.

Figure 4. The estimated incidence rate ratio (IRR) for heat and cold wave associations with all-cause mortality among veterans with COPD (2016 to 2021,
n=377,545) from lag day 0 to 7, stratified by self-reported gender. Heat waves defined as 2+ consecutive days where the ambient mean daily temperature
exceeded the 90th percentile of ambient mean temperature values for the warm season (April to September) from 1992 to 2021. Cold waves defined as 2+ con-
secutive days where the ambient mean daily temperature was below the 10th percentile of ambient mean temperature values for the cold season (October to
March) from 1992 to 2021. Estimates (95% CIs) were generated via conditional logistic regression models adjusted for daily total precipitation, mean wind
speed, mean specific humidity, and holiday status. Points represent the estimated IRR and lines denote the 95% CI of the estimated IRR. Numeric data can be
found in Table S5. Note: CI, confidence interval; COPD, chronic obstructive pulmonary disease.
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attempts to thermoregulate via vasodilation, there can be a mis-
match between increased cardiac demand and the ability of the
heart to pump blood faster to meet this demand especially
among individuals with underlying cardiac impairments.37 This
mismatch can cascade into severe cardiovascular health events
including cardiovascular collapse.37 There may also be a direct
impact of extreme heat on the respiratory system although it has
yet to be known how extreme heat impacts COPD.38 Among
individuals with asthma, research suggested inhalation of hot
and humid air may induce bronchoconstriction mediated via the
cholinergic reflex.39

The biological mechanisms underlying delayed effects of cold
waves on health risks are less understood and may be most associ-
ated with more subacute causes of death such as COPD exacerba-
tions.40 In a population of individuals with COPD, delayed impacts
of cold wave–associated mortality may be attributed to viral respi-
ratory infections41–43 and bacterial pneumonia,41,42 both more com-
mon in the cold season of the year.41–43 Higher rates of adverse
COPD-related outcomes, including exacerbations and hospitaliza-
tions, in the cold season is another well-documented phenomenon
that may explain our results.44–46 Inflammation and bronchocon-
striction are two postulated mechanisms by which cold exposure
negatively affects individuals with COPD.38,41

Both heat waves and cold waves conferred a similar absolute
risk of mortality on their strongest lag days in the veteran popula-
tion with 651 deaths per 100,000 attributable to heat wave lag
day 0 exposure and 687 deaths per 100,000 attributable to cold
wave lag day 4 exposure, respectively. Cold waves had a higher
AR due to the elevated mortality rates in the cold season com-
pared to the warm season. These attributable risk measures are
effective in illustrating the public health impact of extreme
weather exposure among this vulnerable population and may be
useful to both physicians and patients in assessing the potential
benefits of engaging in protective behaviors during periods of
extremely hot or cold weather and improving the housing condi-
tions of individuals living with COPD.

Our results for heat and cold wave mortality risks on the mul-
tiplicative scale were similar to those reported in other studies of

the general population. The increase in heat wave–associated risk
for mortality in the general population ranged from 3% to
24.6%19,20,36,47–51 compared to our highest estimated mortality
risk of 4%. Cold wave–associated risk for mortality in the gen-
eral population ranged from a relative risk (RR) of 1.01 to
1.57.52–56 A recent meta-analysis reported an RR of 1.10 (95%
CI: 1.04 to 1.07)57 for cold wave effects on all-cause mortality
compared with our highest estimated IRR of 1.04. While our
estimated multiplicative associations for heat and cold waves
were relatively lower than most estimates reported in the litera-
ture, they fall within the range of previously reported effect esti-
mates. The cause of this attenuation is unknown but may be
attributed to our population being composed entirely of individ-
uals diagnosed with a chronic respiratory disease. Such individ-
uals, while more susceptible, may also be more conscious of
their fragile health state and take precautionary measures to
avoid extreme weather exposure compared to a healthy popula-
tion that may be outdoors in suboptimal temperatures. One
study detected a 4.9% decrease in asthma hospitalizations dur-
ing cold wave days, which the authors suggested could be
related to individuals with asthma taking extra medical precau-
tions during extremely cold weather events.58

Prior research provides evidence for sex-based disparities
with higher heat wave–related mortality risk in women than men,
attributed to differences in physiology, behavioral patterns, and
occuptation.3,48 Our results were congruent with the prior litera-
ture in that cisgender women had a significantly greater heat
wave–associated mortality risk than cisgender men. Heat wave
effects on mortality for men ranged from RR 1.02 to 1.0619,20,51
and for women from RR 1.06 to 1.1219,20,51 compared to our
maximum effect estimates of IRR 1.03 in cisgender men and IRR
1.26 in cisgender women. Our results may suggest cisgender
women veterans with COPD have greater heat wave–related mor-
tality risk compared to previous studies in the general population.
While our point estimates for cold wave–related mortality among
cisgender women followed a similar trend as cisgender men, the
estimates were imprecise and did not indicate an association
unlike prior research.53,56

Figure 5. The estimated incidence rate ratio (IRR) for heat and cold wave associations with all-cause mortality among veterans with COPD (2016 to 2021,
n=377,545) from lag day 0 to 7, stratified by self-reported race. Heat waves defined as 2+ consecutive days where the ambient mean daily temperature
exceeded the 90th percentile of ambient mean temperature values for the warm season (April to September) from 1992 to 2021. Cold waves defined as 2+ con-
secutive days where the ambient mean daily temperature was below the 10th percentile of ambient mean temperature values for the cold season (October to
March) from 1992 to 2021. Estimates (95% CIs) were generated via conditional logistic regression models adjusted for daily total precipitation, mean wind
speed, mean specific humidity, and holiday status. Points represent the estimated IRR and lines denote the 95% CI of the estimated IRR. Numeric data can be
found in Table S6. Note: CI, confidence interval; COPD, chronic obstructive pulmonary disease.
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Age stratified estimates failed to detect differences between
older and younger veterans in our population contrary to other
research that found age–related disparities in heat19,20,34,47,51

and cold wave–associated mortality.22,52,54,55,57 Indeed, a recent
review concluded strong evidence for higher mortality risk in
older populations due to extreme heat and cold exposure attrib-
uted to physiology, behavioral practices, prevalence of comorbid-
ities, living alone, and access to indoor heat and air conditioning.3

Furthermore, it would be hypothesized that as a veteran aged and
transitioned into a retirement phase, living conditions, behaviors,
and physical health would change, which could enhance suscepti-
bility to extreme weather events, but this has not been formally
tested. The lack of disparate mortality risk between the age groups
in our study could, however, be reflective of the quality and
access of care received at the VHA.

Our results mostly failed to show differences in the effects of
heat and cold waves when comparing racial and ethnic minorities
to white and non-Hispanic individuals. This may be due to the
relatively small number of veterans in our cohort who identified
as racial and ethnic minorities combined with a scarcity of mor-
tality events occurring on heat and cold wave exposure days.
Some of our effect estimates indicated heightened heat wave–
related mortality risk particularly for black veterans and cold
wave–related mortality risk for AIAN and Hispanic veterans,
although caution should be used in interpreting AIAN mortality
risks as sample sizes in this group were relatively small. Another
plausible explanation for the lack of race and ethnicity-based dif-
ferences is that the VHA health care system has fewer access bar-
riers compared to private health care for veterans. Indeed, the
VHA provides a high level of care often matching or outperform-
ing care at peer non-VHA health care facilities.59,60 In treatment
of COPD specifically, the VHA outperforms 94% of health care
market regions compared to non-VHA hospitals.60 As an equal
access health care system with facilities that are widespread,
including many clinics in rural areas, this may minimize racial
inequities in care within the VHA. One study estimated the 30-
d mortality rate in patients sent by ambulance to a VHA hospi-
tal was 20.1% lower59 compared to non-VHA hospitals with
even better outcomes for black and Hispanic patients with a
25.8%59 and 22.7%59 lower mortality rate, respectively. This is
not to say that there are no racial disparities in health outcomes
within the VHA, only that these disparities may be smaller than
in the nonveteran population. One study comparing mortality in
white vs. black veterans compared to nonveterans found the dis-
parity in mortality rates to be smaller in the veteran population
than the nonveteran population, which may be due to the rela-
tively elevated socioeconomic status of black veterans com-
pared to black nonveterans.61

Our work has several limitations. The composition of the
study cohort was overwhelmingly male and older, the latter
reflecting that COPD is predominantly a disease of older
adults. There was missingness in the race data that could have
hampered our ability to detect potential differences in heat and
cold wave mortality risk. In addition, the specific causes of
mortality could not be distinguished. We did not have data on
the severity of COPD among our cohort, which prohibited an
evaluation of heat and cold wave–associated mortality risks
with respect to severity of disease. This is important to con-
sider for future research as individuals with severe disease may
have a larger risk of mortality associated with extreme weather
exposure compared to those with mild disease. Exposure mis-
classification is possible, as we assigned heat and cold wave
exposure to a geocoded residence which is a proxy for outdoor
exposure and cannot account for routine or seasonal travel. It is
also possible some veterans with COPD were missed in our

study population due to misdiagnoses or if a veteran switched
to private medical insurance. We were limited in using ICD
codes alone to identify patients with COPD. Diagnostic spi-
rometry information is considered a gold standard measure in
identifying individuals with COPD, but we did not have spi-
rometry information for our cohort and these data are not uni-
formly collected in the VHA Health Care System. One prior
nationwide study of veterans found <52% had spirometry in-
formation within 2 years of the initial date of COPD diagno-
sis.62 However, prior research in VHA populations found ICD
codes perform modestly well with fairly high specificity and
moderate sensitivity.63–65 Lastly, our study was a relatively
short 5-year time period that evaluated a rare exposure, which
limits our ability to detect associations within subpopulations.

The primary strength of our study was the implementation
of an individual-level national assessment focused entirely on
individuals with a chronic respiratory disease, a growing popu-
lation with high vulnerability to extreme weather events. The
results of this study will inform clinical, policy, and public
health practice on the effects of climate change and extreme
weather events among individuals with chronic respiratory ill-
nesses. Our study may also facilitate the development of tar-
geted early warning systems for heat and cold waves among
high-risk populations, as current warning systems are built pri-
marily for the general population which may have a higher tol-
erance for perturbations in ambient temperature compared to
high-risk groups.

Conclusion
In the United States veteran population with COPD, heat and
cold waves increased the risk of all-cause mortality, with cold
waves conferring a greater number of excess deaths compared to
heat waves. Cisgender women were estimated to have greater
risks of mortality due to heat wave exposure with suggestive evi-
dence of elevated heat wave risk in black veterans. AIAN and
Hispanic veterans may have elevated risk due to cold wave expo-
sure. This study elucidated the impacts of heat and cold waves
among a population of veterans with a chronic respiratory dis-
ease, and these results can inform future clinical treatment and
public health policy to lessen the burden of climate-related haz-
ards in high-risk populations.
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